Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
China CDC Wkly ; 5(22): 485-491, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: covidwho-20235789
2.
Chinese Journal of Food Hygiene ; 34(5):863-870, 2022.
Artículo en Chino | CAB Abstracts | ID: covidwho-2203856

RESUMEN

The history of the establishment of foodborne disease outbreak monitoring system in the United States was introduced and the surveillance data of foodborne disease outbreaks in the United States from 2011 to 2017 were analyzed and compared with that in China. It was found that there were obvious differences in the characteristics of surveillance data of foodborne disease outbreaks between China and the United States in the same period, and microbial pathogenic factors were the main cause of foodborne disease outbreaks. Facing the challenges of global trade integration and post epidemic era of COVID-19,China's foodborne disease outbreak monitoring system should accelerate the use of new technologies to improve the ability of identification and early warning, and foodborne disease outbreak data results should further play the technical support role in the formulation of relevant food safety management measures in China.

3.
Comput Biol Med ; 151(Pt A): 106288, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2104649

RESUMEN

SARS-CoV-2 Mpro (Mpro) is the critical cysteine protease in coronavirus viral replication. Tea polyphenols are effective Mpro inhibitors. Therefore, we aim to isolate and synthesize more novel tea polyphenols from Zhenghedabai (ZHDB) white tea methanol-water (MW) extracts that might inhibit COVID-19. Through molecular networking, 33 compounds were identified and divided into 5 clusters. Further, natural products molecular network (MN) analysis showed that MN1 has new phenylpropanoid-substituted ester-catechin (PSEC), and MN5 has the important basic compound type hydroxycinnamoylcatechins (HCCs). Thus, a new PSEC (1, PSEC636) was isolated, which can be further detected in 14 green tea samples. A series of HCCs were synthesized (2-6), including three new acetylated HCCs (3-5). Then we used surface plasmon resonance (SPR) to analyze the equilibrium dissociation constants (KD) for the interaction of 12 catechins and Mpro. The KD values of PSEC636 (1), EGC-C (2), and EC-CDA (3) were 2.25, 2.81, and 2.44 µM, respectively. Moreover, compounds 1, 2, and 3 showed the potential Mpro inhibition with IC50 5.95 ± 0.17, 9.09 ± 0.22, and 23.10 ± 0.69 µM, respectively. Further, we used induced fit docking (IFD), binding pose metadynamics (BPMD), and molecular dynamics (MD) to explore the stable binding pose of Mpro-1, showing that 1 could tightly bond with the amino acid residues THR26, HIS41, CYS44, TYR54, GLU166, and ASP187. The computer modeling studies reveal that the ester, acetyl, and pyrogallol groups could improve inhibitory activity. Our research suggests that these catechins are effective Mpro inhibitors, and might be developed as therapeutics against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Catequina , Humanos , SARS-CoV-2 , Catequina/farmacología , , Polifenoles , Ésteres
4.
Nature ; 609(7927): 582-589, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2016756

RESUMEN

Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.


Asunto(s)
Microbioma Gastrointestinal , Intestino Grueso , Simbiosis , Tripsina , Administración Oral , Animales , Sistemas de Secreción Bacterianos , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , COVID-19/complicaciones , Citrobacter rodentium/inmunología , Diarrea/complicaciones , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Inmunoglobulina A/metabolismo , Intestino Grueso/metabolismo , Intestino Grueso/microbiología , Ratones , Virus de la Hepatitis Murina/metabolismo , Virus de la Hepatitis Murina/patogenicidad , Proteolisis , SARS-CoV-2/patogenicidad , Tripsina/metabolismo , Internalización del Virus
5.
World J Clin Cases ; 10(23): 8161-8169, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1998046

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been far more devastating than expected, showing no signs of slowing down at present. Heilongjiang Province is the most northeastern province of China, and has cold weather for nearly half a year and an annual temperature difference of more than 60ºC, which increases the underlying morbidity associated with pulmonary diseases, and thus leads to lung dysfunction. The demographic features and laboratory parameters of COVID-19 deceased patients in Heilongjiang Province, China with such climatic characteristics are still not clearly illustrated. AIM: To illustrate the demographic features and laboratory parameters of COVID-19 deceased patients in Heilongjiang Province by comparing with those of surviving severe and critically ill cases. METHODS: COVID-19 deceased patients from different hospitals in Heilongjiang Province were included in this retrospective study and compared their characteristics with those of surviving severe and critically ill cases in the COVID-19 treatment center of the First Affiliated Hospital of Harbin Medical University. The surviving patients were divided into severe group and critically ill group according to the Diagnosis and Treatment of New Coronavirus Pneumonia (the seventh edition). Demographic data were collected and recorded upon admission. Laboratory parameters were obtained from the medical records, and then compared among the groups. RESULTS: Twelve COVID-19 deceased patients, 27 severe cases and 26 critically ill cases were enrolled in this retrospective study. No differences in age, gender, and number of comorbidities between groups were found. Neutrophil percentage (NEUT%), platelet (PLT), C-reactive protein (CRP), creatine kinase isoenzyme (CK-MB), serum troponin I (TNI) and brain natriuretic peptides (BNP) showed significant differences among the groups (P = 0.020, P = 0.001, P < 0.001, P = 0.001, P < 0.001, P < 0.001, respectively). The increase of CRP, D-dimer and NEUT% levels, as well as the decrease of lymphocyte count (LYMPH) and PLT counts, showed significant correlation with death of COVID-19 patients (P = 0.023, P = 0.008, P = 0.045, P = 0.020, P = 0.015, respectively). CONCLUSION: Compared with surviving severe and critically ill cases, no special demographic features of COVID-19 deceased patients were observed, while some laboratory parameters including NEUT%, PLT, CRP, CK-MB, TNI and BNP showed significant differences. COVID-19 deceased patients had higher CRP, D-dimer and NEUT% levels and lower LYMPH and PLT counts.

6.
Int Immunopharmacol ; 102: 108383, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1521087

RESUMEN

BACKGROUNDS: To date, the effects of SARS-CoV-2 vaccines on people living with HIV (PLWH) were mainly focused on messenger RNA (mRNA) and adenovirus vector-based vaccines, and little is known about the effects of inactivated virus-based vaccine. This study was designed to determine the effects of inactivated SARS-CoV-2 vaccines on PLWH. METHODS: Twenty-four HIV-positive individuals and 24 healthy donors (HD) were respectively recruited from Malipo Country People's Hospital and community in Kunming city. Enumeration of lymphocyte and CD4+CD45RO+ memory T cells were evaluated by flow cytometry. Competitive ELISA was used to measure the level of Anti-SARS-CoV-2 neutralization antibody. Spearman or Pearson correlation analysis was used to analyze the relationship between laboratory indicators and neutralization antibodies in PLWH. T-cell responses (Th1, Th2, Th17, Treg) and intracellular expression of cytokines (IL-2 and TNF-α) in CD4 or CD8 were induced by spike protein in SARS-CoV-2 (SARS-2-S) and further measured by intracellular staining. RESULTS: CD4, B cells, CD4+CD45RO+ memory T cells in peripheral blood of PLWH are dramatically decreased in comparison with HD. Importantly, PLWH display comparable neutralizing antibody positive rate to HD after inoculation with inactivated SARS-CoV-2 vaccine. However, PLWH showed weaker responses to vaccines exhibited by lower levels of neutralizing antibodies. Correlation analysis shows that this is possibly caused by low number of CD4 and B cells. Furthermore, SARS-2-S-induced Th2 and Th17 responses are also decreased in PLWH, while no influences on Treg and other cytokines (IL-2, TNF-α and IFN-γ) observed. CONCLUSIONS: PLWH and HD have comparable neutralizing antibodies positive rates, but PLWH display weaker responses to inactivated SARS-CoV-2 vaccines in magnitude, which suggests that a booster dose or dose adjustment are required for HIV-infected individuals, especially for those with lower counts of CD4 T and B cells.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Infecciones por VIH/inmunología , Vacunas de Productos Inactivados/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/complicaciones , Voluntarios Sanos , Humanos , Inmunogenicidad Vacunal , Masculino , Células T de Memoria/inmunología , Persona de Mediana Edad , SARS-CoV-2/inmunología , Células Th17/inmunología , Células Th2/inmunología , Vacunas de Productos Inactivados/administración & dosificación
7.
researchsquare; 2021.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-774361.v1

RESUMEN

The gastrointestinal tract is constitutively exposed to proteases including trypsin, a serine protease originating from the pancreas1. Elevated trypsin levels in the large intestine have been implicated in pathological conditions including infectious and inflammatory bowel disease2-4. Here we show that trypsin is regulated via degradation by members of the gut microbiota. After passing through the small intestine, trypsin activity is markedly reduced in the caecum of specific pathogen-free (SPF) mice, whereas germ-free (GF) mice have high luminal trypsin levels. We have successfully identified and isolated Paraprevotella strains from the faecal microbiome of healthy human donors as potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins and promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus, a mouse coronavirus dependent on trypsin and trypsin-like proteases for entry into host cells5,6. Congruently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced diarrhoea severity in patients with SARS-CoV2 infection. Therefore, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA